The Birational Geometry of the Moduli Spaces of Sheaves on P2
نویسنده
چکیده
In this paper, we survey recent developments in the birational geometry of the moduli spaces M(ξ) of semistable sheaves on P following [ABCH], [CH], [CH2], [CHW] and [H]. We discuss the cones of effective, ample and movable divisors on M(ξ). We introduce Bridgeland stability conditions, the main technical tools that precipitated the recent advances, and explain their applications to interpolation problems.
منابع مشابه
Birational Geometry of Moduli Spaces of Sheaves and Bridgeland Stability
Moduli spaces of sheaves and Hilbert schemes of points have experienced a recent resurgence in interest in the past several years, due largely to new techniques arising from Bridgeland stability conditions and derived category methods. In particular, classical questions about the birational geometry of these spaces can be answered by using new tools such as the positivity lemma of Bayer and Mac...
متن کاملBirational morphisms and Poisson moduli spaces
We study birational morphisms between smooth projective surfaces that respect a given Poisson structure, with particular attention to induced birational maps between the (Poisson) moduli spaces of sheaves on those surfaces. In particular, to any birational morphism, we associate a corresponding “minimal lift” operation on sheaves of homological dimension ≤ 1, and study its properties. In partic...
متن کاملSome Examples of Isomorphisms Induced by Fourier-mukai Functors
In order to investigate sheaves on abelian varieties, Mukai [Mu1] introduced a very powerful tool called Fourier-Mukai functor. As an application, Mukai ([Mu1], [Mu4]) computed some moduli spaces of stable sheaves on abelian varieties. Recently, Dekker [D] found some examples of isomorphisms of moduli spaces of sheaves induced by Fourier-Mukai functors. As an application, he proved that moduli ...
متن کاملSome Notes on the Moduli of Stable Sheaves on Elliptic Surfaces
In this paper, we shall consider the birational structure of moduli of stable sheaves on elliptic surfaces, which is a generalization of Friedman’s results to higher rank cases. As applications, we show that some moduli spaces of stable sheaves on P 2 are rational. We also compute the Picard groups of those on Abelian surfaces.
متن کاملBirational Geometry of Singular Moduli Spaces of O’grady Type
Following Bayer and Macr̀ı, we study the birational geometry of singular moduli spaces M of sheaves on a K3 surface X which admit symplectic resolutions. More precisely, we use the Bayer-Macr̀ı map from the space of Bridgeland stability conditions Stab(X) to the cone of movable divisors on M to relate wall-crossing in Stab(X) to birational transformations of M . We give a complete classification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014